A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS

Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are design...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics. - 1999. - 35(2013), 5 vom: 01., Seite c473-c494
1. Verfasser: Fu, Zhisong (VerfasserIn)
Weitere Verfasser: Kirby, Robert M, Whitaker, Ross T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics
Schlagworte:Journal Article Hamilton–Jacobi equation eikonal equation graphics processing unit parallel algorithm shared memory multiple-processor computer system tetrahedral mesh
LEADER 01000caa a22002652 4500
001 NLM241903173
003 DE-627
005 20250217121656.0
007 tu
008 231224s2013 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0806.xml 
035 |a (DE-627)NLM241903173 
035 |a (NLM)25221418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Zhisong  |e verfasserin  |4 aut 
245 1 2 |a A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TETRAHEDRAL DOMAINS 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 10.06.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Generating numerical solutions to the eikonal equation and its many variations has a broad range of applications in both the natural and computational sciences. Efficient solvers on cutting-edge, parallel architectures require new algorithms that may not be theoretically optimal, but that are designed to allow asynchronous solution updates and have limited memory access patterns. This paper presents a parallel algorithm for solving the eikonal equation on fully unstructured tetrahedral meshes. The method is appropriate for the type of fine-grained parallelism found on modern massively-SIMD architectures such as graphics processors and takes into account the particular constraints and capabilities of these computing platforms. This work builds on previous work for solving these equations on triangle meshes; in this paper we adapt and extend previous two-dimensional strategies to accommodate three-dimensional, unstructured, tetrahedralized domains. These new developments include a local update strategy with data compaction for tetrahedral meshes that provides solutions on both serial and parallel architectures, with a generalization to inhomogeneous, anisotropic speed functions. We also propose two new update schemes, specialized to mitigate the natural data increase observed when moving to three dimensions, and the data structures necessary for efficiently mapping data to parallel SIMD processors in a way that maintains computational density. Finally, we present descriptions of the implementations for a single CPU, as well as multicore CPUs with shared memory and SIMD architectures, with comparative results against state-of-the-art eikonal solvers 
650 4 |a Journal Article 
650 4 |a Hamilton–Jacobi equation 
650 4 |a eikonal equation 
650 4 |a graphics processing unit 
650 4 |a parallel algorithm 
650 4 |a shared memory multiple-processor computer system 
650 4 |a tetrahedral mesh 
700 1 |a Kirby, Robert M  |e verfasserin  |4 aut 
700 1 |a Whitaker, Ross T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t SIAM journal on scientific computing : a publication of the Society for Industrial and Applied Mathematics  |d 1999  |g 35(2013), 5 vom: 01., Seite c473-c494  |w (DE-627)NLM09823725X  |x 1064-8275  |7 nnns 
773 1 8 |g volume:35  |g year:2013  |g number:5  |g day:01  |g pages:c473-c494 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2013  |e 5  |b 01  |h c473-c494