Multilayer surface albedo for face recognition with reference images in bad lighting conditions

In this paper, we propose a multilayer surface albedo (MLSA) model to tackle face recognition in bad lighting conditions, especially with reference images in bad lighting conditions. Some previous researches conclude that illumination variations mainly lie in the large-scale features of an image and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 11 vom: 25. Nov., Seite 4709-23
1. Verfasser: Lai, Zhao-Rong (VerfasserIn)
Weitere Verfasser: Dai, Dao-Qing, Ren, Chuan-Xian, Huang, Ke-Kun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM241858739
003 DE-627
005 20250217120736.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2356292  |2 doi 
028 5 2 |a pubmed25n0806.xml 
035 |a (DE-627)NLM241858739 
035 |a (NLM)25216483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lai, Zhao-Rong  |e verfasserin  |4 aut 
245 1 0 |a Multilayer surface albedo for face recognition with reference images in bad lighting conditions 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2015 
500 |a Date Revised 30.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a multilayer surface albedo (MLSA) model to tackle face recognition in bad lighting conditions, especially with reference images in bad lighting conditions. Some previous researches conclude that illumination variations mainly lie in the large-scale features of an image and extract small-scale features in the surface albedo (or surface texture). However, this surface albedo is not robust enough, which still contains some detrimental sharp features. To improve robustness of the surface albedo, MLSA further decomposes it as a linear sum of several detailed layers, to separate and represent features of different scales in a more specific way. Then, the layers are adjusted by separate weights, which are global parameters and selected for only once. A criterion function is developed to select these layer weights with an independent training set. Despite controlled illumination variations, MLSA is also effective to uncontrolled illumination variations, even mixed with other complicated variations (expression, pose, occlusion, and so on). Extensive experiments on four benchmark data sets show that MLSA has good receiver operating characteristic curve and statistical discriminating capability. The refined albedo improves recognition performance, especially with reference images in bad lighting conditions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dai, Dao-Qing  |e verfasserin  |4 aut 
700 1 |a Ren, Chuan-Xian  |e verfasserin  |4 aut 
700 1 |a Huang, Ke-Kun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 11 vom: 25. Nov., Seite 4709-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:23  |g year:2014  |g number:11  |g day:25  |g month:11  |g pages:4709-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2356292  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 11  |b 25  |c 11  |h 4709-23