Fast diffusion-limited lyotropic phase transitions studied in situ using continuous flow microfluidics/microfocus-SAXS

Fast concentration-induced diffusion-limited lyotropic phase transitions can be studied in situ with millisecond time resolution using continuous flow microfluidics in combination with microfocus small-angle X-ray scattering. The method was applied to follow a classical self-assembly sequence where...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 42 vom: 28. Okt., Seite 12494-502
1. Verfasser: With, Sebastian (VerfasserIn)
Weitere Verfasser: Trebbin, Martin, Bartz, Christian B A, Neuber, Christian, Dulle, Martin, Yu, Shun, Roth, Stephan V, Schmidt, Hans-Werner, Förster, Stephan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Fast concentration-induced diffusion-limited lyotropic phase transitions can be studied in situ with millisecond time resolution using continuous flow microfluidics in combination with microfocus small-angle X-ray scattering. The method was applied to follow a classical self-assembly sequence where amphiphiles assemble into micelles, which subsequently assemble into an ordered lattice via a disorder/order transition. As a model system we selected the self-assembly of an amphiphilic block copolymer induced by the addition of a nonsolvent. Using microchannel hydrodynamic flow-focusing, large concentration gradients can be generated, leading to a deep quench from the miscible to the microphase-separated state. Within milliseconds the block copolymers assembly via a spinodal microphase separation into micelles, followed by a disorder/order transition into an FCC liquid-crystalline phase with late-stage domain growth and shear-induced domain orientation into a mesocrystal. A comparison with a slow macroscopic near-equilibrium kinetic experiment shows that the fast structural transitions follow a direct pathway to the equilibrium structure without the trapping of metastable states
Beschreibung:Date Completed 21.05.2015
Date Revised 28.10.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la502971m