Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network

Copyright © 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 28 vom: 30. Okt., Seite 2040-6
1. Verfasser: Lyons, James (VerfasserIn)
Weitere Verfasser: Dehzangi, Abdollah, Heffernan, Rhys, Sharma, Alok, Paliwal, Kuldip, Sattar, Abdul, Zhou, Yaoqi, Yang, Yuedong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't deep learning fold recognition fragment structure prediction local structure prediction neural network protein structure prediction secondary structure prediction Proteins
LEADER 01000naa a22002652 4500
001 NLM241821843
003 DE-627
005 20231224125057.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23718  |2 doi 
028 5 2 |a pubmed24n0806.xml 
035 |a (DE-627)NLM241821843 
035 |a (NLM)25212657 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyons, James  |e verfasserin  |4 aut 
245 1 0 |a Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2015 
500 |a Date Revised 10.12.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2014 Wiley Periodicals, Inc. 
520 |a Because a nearly constant distance between two neighbouring Cα atoms, local backbone structure of proteins can be represented accurately by the angle between C(αi-1)-C(αi)-C(αi+1) (θ) and a dihedral angle rotated about the C(αi)-C(αi+1) bond (τ). θ and τ angles, as the representative of structural properties of three to four amino-acid residues, offer a description of backbone conformations that is complementary to φ and ψ angles (single residue) and secondary structures (>3 residues). Here, we report the first machine-learning technique for sequence-based prediction of θ and τ angles. Predicted angles based on an independent test have a mean absolute error of 9° for θ and 34° for τ with a distribution on the θ-τ plane close to that of native values. The average root-mean-square distance of 10-residue fragment structures constructed from predicted θ and τ angles is only 1.9Å from their corresponding native structures. Predicted θ and τ angles are expected to be complementary to predicted ϕ and ψ angles and secondary structures for using in model validation and template-based as well as template-free structure prediction. The deep neural network learning technique is available as an on-line server called Structural Property prediction with Integrated DEep neuRal network (SPIDER) at http://sparks-lab.org 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a deep learning 
650 4 |a fold recognition 
650 4 |a fragment structure prediction 
650 4 |a local structure prediction 
650 4 |a neural network 
650 4 |a protein structure prediction 
650 4 |a secondary structure prediction 
650 7 |a Proteins  |2 NLM 
700 1 |a Dehzangi, Abdollah  |e verfasserin  |4 aut 
700 1 |a Heffernan, Rhys  |e verfasserin  |4 aut 
700 1 |a Sharma, Alok  |e verfasserin  |4 aut 
700 1 |a Paliwal, Kuldip  |e verfasserin  |4 aut 
700 1 |a Sattar, Abdul  |e verfasserin  |4 aut 
700 1 |a Zhou, Yaoqi  |e verfasserin  |4 aut 
700 1 |a Yang, Yuedong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 35(2014), 28 vom: 30. Okt., Seite 2040-6  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:28  |g day:30  |g month:10  |g pages:2040-6 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23718  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 28  |b 30  |c 10  |h 2040-6