Recognizing Action Units for Facial Expression Analysis

Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 23(2001), 2 vom: 01. Feb., Seite 97-115
1. Verfasser: Tian, Ying-Li (VerfasserIn)
Weitere Verfasser: Kanade, Takeo, Cohn, Jeffrey F
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article AU combinations Computer vision action units facial action coding system facial expression analysis multistate face and facial component models neural network
LEADER 01000naa a22002652 4500
001 NLM241798159
003 DE-627
005 20231224125028.0
007 cr uuu---uuuuu
008 231224s2001 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0806.xml 
035 |a (DE-627)NLM241798159 
035 |a (NLM)25210210 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tian, Ying-Li  |e verfasserin  |4 aut 
245 1 0 |a Recognizing Action Units for Facial Expression Analysis 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an Automatic Face Analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AUs) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AUs and 10 lower face AUs) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AUs and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AUs. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams 
650 4 |a Journal Article 
650 4 |a AU combinations 
650 4 |a Computer vision 
650 4 |a action units 
650 4 |a facial action coding system 
650 4 |a facial expression analysis 
650 4 |a multistate face and facial component models 
650 4 |a neural network 
700 1 |a Kanade, Takeo  |e verfasserin  |4 aut 
700 1 |a Cohn, Jeffrey F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 23(2001), 2 vom: 01. Feb., Seite 97-115  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:23  |g year:2001  |g number:2  |g day:01  |g month:02  |g pages:97-115 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2001  |e 2  |b 01  |c 02  |h 97-115