Comparative study of the self-assembly of gold and silver nanoparticles onto thiophene oil

Nanoparticle self-assembly is fundamentally important for bottom-up functional device fabrication. Currently, most nanoparticle self-assembly has been achieved with gold nanoparticles (AuNPs) functionalized with surfactants, polymeric materials, or cross-linkers. Reported herein is a facile synthesi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 39 vom: 07. Okt., Seite 11520-7
1. Verfasser: Gadogbe, Manuel (VerfasserIn)
Weitere Verfasser: Ansar, Siyam M, Chu, I-Wei, Zou, Shengli, Zhang, Dongmao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Nanoparticle self-assembly is fundamentally important for bottom-up functional device fabrication. Currently, most nanoparticle self-assembly has been achieved with gold nanoparticles (AuNPs) functionalized with surfactants, polymeric materials, or cross-linkers. Reported herein is a facile synthesis of gold and silver nanoparticle (AgNP) films assembled onto thiophene oil by simply vortex mixing neat thiophene with colloidal AuNPs or AgNPs for ∼1 min. The AuNP film can be made using every type of colloidal AuNPs we have explored, including sodium borohydride-reduced AuNPs with a diameter of ∼5 nm, tannic acid-reduced AuNPs of ∼10 nm diameter, and citrate-reduced AuNPs with particle sizes of ∼13 and ∼30 nm diameter. The AuNP film has excellent stability and it is extremely flexible. It can be stretched, shrunken, and deformed accordingly by changing the volume or shape of the enclosed thiophene oil. However, the AgNP film is unstable, and it can be rapidly discolored and disintegrated into small flakes that float on the thiophene surface. The AuNP and AgNP films prepared in the glass vials can be readily transferred to glass slides and metal substrates for surface-enhanced Raman spectral acquisition
Beschreibung:Date Completed 14.05.2015
Date Revised 07.10.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la502574p