Development of a gliding arc plasma reactor for CO₂destruction
A gliding arc plasma reactor was designed to destruct carbon dioxide (CO₂), which is a major greenhouse gas. To increase the CO₂destruction rate with a high processing gas volume, an orifice baffle for gathering the gas flow at the centre of the electrodes was installed in the gliding arc plasma rea...
Veröffentlicht in: | Environmental technology. - 1998. - 35(2014), 21-24 vom: 04. Nov., Seite 2940-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't CO2 destruction carbon dioxide dry plasma reactor greenhouse gas three phase gliding arc plasma Air Pollutants Carbon Dioxide 142M471B3J mehr... |
Zusammenfassung: | A gliding arc plasma reactor was designed to destruct carbon dioxide (CO₂), which is a major greenhouse gas. To increase the CO₂destruction rate with a high processing gas volume, an orifice baffle for gathering the gas flow at the centre of the electrodes was installed in the gliding arc plasma reactor. The CO₂inflows with methane (CH₄) and steam (H₂O) improve the CO₂destruction. The parametric studies have been made of the change of CH4 addition, gas injection velocity of the centre nozzle, change of CO₂gas flow rate, and orifice baffle configuration. The produced gases were measured, and the data analysis has been achieved in determining the CO₂destruction rate, CH₄conversion rate, destruction energy efficiency, and selectivity for CO₂and H₂. The highest CO₂ destruction rate for each parameter has been shown as follows: the CH₄/CO₂ratio is 1 as 40%, and the injection gas velocity is 69.5 m/s as 35.7%, the CO₂flow rate is 5 L/min as 42.6%, and the orifice baffle is Type 1, which had the smallest internal area, as 35.7% |
---|---|
Beschreibung: | Date Completed 20.03.2015 Date Revised 05.09.2014 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 0959-3330 |
DOI: | 10.1080/09593330.2014.925979 |