Nonlocal sparse and low-rank regularization for optical flow estimation

Designing an appropriate regularizer is of great importance for accurate optical flow estimation. Recent works exploiting the nonlocal similarity and the sparsity of the motion field have led to promising flow estimation results. In this paper, we propose to unify these two powerful priors. To this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 10 vom: 28. Okt., Seite 4527-38
1. Verfasser: Dong, Weisheng (VerfasserIn)
Weitere Verfasser: Shi, Guangming, Hu, Xiaocheng, Ma, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM241395909
003 DE-627
005 20231224124148.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2352497  |2 doi 
028 5 2 |a pubmed24n0804.xml 
035 |a (DE-627)NLM241395909 
035 |a (NLM)25167553 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Weisheng  |e verfasserin  |4 aut 
245 1 0 |a Nonlocal sparse and low-rank regularization for optical flow estimation 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 13.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Designing an appropriate regularizer is of great importance for accurate optical flow estimation. Recent works exploiting the nonlocal similarity and the sparsity of the motion field have led to promising flow estimation results. In this paper, we propose to unify these two powerful priors. To this end, we propose an effective flow regularization technique based on joint low-rank and sparse matrix recovery. By grouping similar flow patches into clusters, we effectively regularize the motion field by decomposing each set of similar flow patches into a low-rank component and a sparse component. For better enforcing the low-rank property, instead of using the convex nuclear norm, we use the log det(·) function as the surrogate of rank, which can also be efficiently minimized by iterative singular value thresholding. Experimental results on the Middlebury benchmark show that the performance of the proposed nonlocal sparse and low-rank regularization method is higher than (or comparable to) those of previous approaches that harness these same priors, and is competitive to current state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shi, Guangming  |e verfasserin  |4 aut 
700 1 |a Hu, Xiaocheng  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 10 vom: 28. Okt., Seite 4527-38  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:10  |g day:28  |g month:10  |g pages:4527-38 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2352497  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 10  |b 28  |c 10  |h 4527-38