Data-dependent hashing based on p-stable distribution

The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 12 vom: 28. Dez., Seite 5033-46
1. Verfasser: Bai, Xiao (VerfasserIn)
Weitere Verfasser: Yang, Haichuan, Zhou, Jun, Ren, Peng, Cheng, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM241395895
003 DE-627
005 20231224124148.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2352458  |2 doi 
028 5 2 |a pubmed24n0804.xml 
035 |a (DE-627)NLM241395895 
035 |a (NLM)25167552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Xiao  |e verfasserin  |4 aut 
245 1 0 |a Data-dependent hashing based on p-stable distribution 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 28.10.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The p-stable distribution is traditionally used for data-independent hashing. In this paper, we describe how to perform data-dependent hashing based on p-stable distribution. We commence by formulating the Euclidean distance preserving property in terms of variance estimation. Based on this property, we develop a projection method, which maps the original data to arbitrary dimensional vectors. Each projection vector is a linear combination of multiple random vectors subject to p-stable distribution, in which the weights for the linear combination are learned based on the training data. An orthogonal matrix is then learned data-dependently for minimizing the thresholding error in quantization. Combining the projection method and orthogonal matrix, we develop an unsupervised hashing scheme, which preserves the Euclidean distance. Compared with data-independent hashing methods, our method takes the data distribution into consideration and gives more accurate hashing results with compact hash codes. Different from many data-dependent hashing methods, our method accommodates multiple hash tables and is not restricted by the number of hash functions. To extend our method to a supervised scenario, we incorporate a supervised label propagation scheme into the proposed projection method. This results in a supervised hashing scheme, which preserves semantic similarity of data. Experimental results show that our methods have outperformed several state-of-the-art hashing approaches in both effectiveness and efficiency 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Haichuan  |e verfasserin  |4 aut 
700 1 |a Zhou, Jun  |e verfasserin  |4 aut 
700 1 |a Ren, Peng  |e verfasserin  |4 aut 
700 1 |a Cheng, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 12 vom: 28. Dez., Seite 5033-46  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:12  |g day:28  |g month:12  |g pages:5033-46 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2352458  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 12  |b 28  |c 12  |h 5033-46