Cyclic electron flow around photosystem I is enhanced at low pH

Copyright © 2014 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 83(2014) vom: 27. Okt., Seite 194-9
1. Verfasser: Tongra, Teena (VerfasserIn)
Weitere Verfasser: Bharti, Sudhakar, Jajoo, Anjana
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chlorophyll fluorescence Cyclic electron flow Electron transport rate Energy dissipation Photosystem I Photosystem II Quantum yield Photosystem I Protein Complex
Beschreibung
Zusammenfassung:Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Earlier studies have shown that at low pH (pH 5.5), PS II fluorescence decreases with concomitant increase in PS I fluorescence (Singh-Rawal et al., 2010). In order to shed light on the reasons of the above stated change, spinach leaf discs were treated with buffers of different pH (7.5, 6.5 and 5.5)and decrease in the photochemical quantum yield of PS II,Y(II) and increase in the photochemical quantum yield of PS I,Y(I) was observed. We observed an enhanced protection against over-reduction of PS I acceptor side at low pH (5.5) treated leaves. This was obviously achieved by the rapid build-up of trans-thylakoid pH gradient at low light intensities and was directly associated with a steep increase in non- photochemical quenching of chlorophyll fluorescence and a decrease in the electron transport rate of PS II. Our results suggested a strong stimulation of cyclic electron flow around PS I at pH 5.5 which directly supports protection against over-reduction of the PS I acceptor side
Beschreibung:Date Completed 16.10.2015
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2014.08.002