A big-microsite framework for soil carbon modeling

© 2014 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 20(2014), 12 vom: 04. Dez., Seite 3610-20
1. Verfasser: Davidson, Eric A (VerfasserIn)
Weitere Verfasser: Savage, Kathleen E, Finzi, Adrien C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. CH4 CO2 DAMM model carbon cycle methane oxidation soil enzymes soil organic matter soil respiration mehr... Soil Carbon 7440-44-0
LEADER 01000naa a22002652 4500
001 NLM241293421
003 DE-627
005 20231224123935.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.12718  |2 doi 
028 5 2 |a pubmed24n0804.xml 
035 |a (DE-627)NLM241293421 
035 |a (NLM)25156470 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Davidson, Eric A  |e verfasserin  |4 aut 
245 1 2 |a A big-microsite framework for soil carbon modeling 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.06.2015 
500 |a Date Revised 16.11.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 John Wiley & Sons Ltd. 
520 |a Soil carbon cycling processes potentially play a large role in biotic feedbacks to climate change, but little agreement exists at present on what the core of numerical soil C cycling models should look like. In contrast, most canopy models of photosynthesis and leaf gas exchange share a common 'Farquhaur-model' core structure. Here, we explore why a similar core model structure for heterotrophic soil respiration remains elusive and how a pathway to that goal might be envisioned. The spatial and temporal variation in soil microsite conditions greatly complicates modeling efforts, but we believe it is possible to develop a tractable number of parameterizable equations that are organized into a coherent, modular, numerical model structure. First, we show parallels in insights gleaned from linking Arrhenius and Michaelis-Menten kinetics for both photosynthesis and soil respiration. Additional equations and layers of complexity are then added to simulate substrate supply. For soils, model modules that simulate carbon stabilization processes will be key to estimating the fraction of soil C that is accessible to enzymes. Potential modules for dynamic photosynthate input, wetting-event inputs, freeze-thaw impacts on substrate diffusion, aggregate turnover, soluble-C sorption, gas transport, methane respiration, and microbial dynamics are described for conceptually and numerically linking our understanding of fast-response processes of soil gas exchange with longer-term dynamics of soil carbon and nitrogen stocks 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a CH4 
650 4 |a CO2 
650 4 |a DAMM model 
650 4 |a carbon cycle 
650 4 |a methane oxidation 
650 4 |a soil enzymes 
650 4 |a soil organic matter 
650 4 |a soil respiration 
650 7 |a Soil  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Savage, Kathleen E  |e verfasserin  |4 aut 
700 1 |a Finzi, Adrien C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 20(2014), 12 vom: 04. Dez., Seite 3610-20  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:12  |g day:04  |g month:12  |g pages:3610-20 
856 4 0 |u http://dx.doi.org/10.1111/gcb.12718  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 12  |b 04  |c 12  |h 3610-20