|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM241286654 |
003 |
DE-627 |
005 |
20231224123926.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jplph.2014.07.017
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0804.xml
|
035 |
|
|
|a (DE-627)NLM241286654
|
035 |
|
|
|a (NLM)25155758
|
035 |
|
|
|a (PII)S0176-1617(14)00206-5
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kleinert, Aleysia
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The reallocation of carbon in P deficient lupins affects biological nitrogen fixation
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.05.2015
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2014 Elsevier GmbH. All rights reserved.
|
520 |
|
|
|a It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Carbon and nitrogen costs
|
650 |
|
4 |
|a Nitrogen fixation
|
650 |
|
4 |
|a P deficiency
|
650 |
|
4 |
|a Photosynthesis
|
650 |
|
4 |
|a Respiration
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Venter, Mauritz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kossmann, Jens
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Valentine, Alexander
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of plant physiology
|d 1979
|g 171(2014), 17 vom: 01. Nov., Seite 1619-24
|w (DE-627)NLM098174622
|x 1618-1328
|7 nnns
|
773 |
1 |
8 |
|g volume:171
|g year:2014
|g number:17
|g day:01
|g month:11
|g pages:1619-24
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jplph.2014.07.017
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 171
|j 2014
|e 17
|b 01
|c 11
|h 1619-24
|