Depinning of drops on inclined smooth and topographic surfaces : experimental and lattice Boltzmann model study

In this study, the dynamics of initially stationary liquid drops on smooth and topographic inclined silicon surfaces was investigated experimentally and by lattice Boltzmann simulations. The transient contact angles and the critical angle of inclination were measured systematically for different liq...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 37 vom: 23. Sept., Seite 11086-95
1. Verfasser: Bommer, Stefan (VerfasserIn)
Weitere Verfasser: Scholl, Hagen, Seemann, Ralf, Kanhaiya, Krishan, Sheraton, Vivek M, Verma, Nishith
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:In this study, the dynamics of initially stationary liquid drops on smooth and topographic inclined silicon surfaces was investigated experimentally and by lattice Boltzmann simulations. The transient contact angles and the critical angle of inclination were measured systematically for different liquids, drop sizes, and surfaces having different wettability and surface roughness. In general, the critical angle of inclination is larger for hydrophilic than for hydrophobic surfaces, irrespective of the liquids, and increases with increasing contact angle hysteresis and decreasing drop sizes. A two-phase liquid-vapor lattice Boltzmann model based on the Shan and Chen approach was developed for two dimensions which incorporates the wetting and topographic characteristics of the surface. The simulation results matched the experimentally found features quantitatively and allowed one to explore the roll-off behavior even in cases that can hardly be accessed experimentally
Beschreibung:Date Completed 22.05.2015
Date Revised 23.09.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la501603x