Practical signal-dependent noise parameter estimation from a single noisy image

The additive white Gaussian noise is widely assumed in many image processing algorithms. However, in the real world, the noise from actual cameras is better modeled as signal-dependent noise (SDN). In this paper, we focus on the SDN model and propose an algorithm to automatically estimate its parame...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 10 vom: 03. Okt., Seite 4361-71
1. Verfasser: Liu, Xinhao (VerfasserIn)
Weitere Verfasser: Tanaka, Masayuki, Okutomi, Masatoshi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM241081432
003 DE-627
005 20231224123500.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2347204  |2 doi 
028 5 2 |a pubmed24n0803.xml 
035 |a (DE-627)NLM241081432 
035 |a (NLM)25134082 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinhao  |e verfasserin  |4 aut 
245 1 0 |a Practical signal-dependent noise parameter estimation from a single noisy image 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 06.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The additive white Gaussian noise is widely assumed in many image processing algorithms. However, in the real world, the noise from actual cameras is better modeled as signal-dependent noise (SDN). In this paper, we focus on the SDN model and propose an algorithm to automatically estimate its parameters from a single noisy image. The proposed algorithm identifies the noise level function of signal-dependent noise assuming the generalized signal-dependent noise model and is also applicable to the Poisson-Gaussian noise model. The accuracy is achieved by improved estimation of local mean and local noise variance from the selected low-rank patches. We evaluate the proposed algorithm with both synthetic and real noisy images. Experiments demonstrate that the proposed estimation algorithm outperforms the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Tanaka, Masayuki  |e verfasserin  |4 aut 
700 1 |a Okutomi, Masatoshi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 10 vom: 03. Okt., Seite 4361-71  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:10  |g day:03  |g month:10  |g pages:4361-71 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2347204  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 10  |b 03  |c 10  |h 4361-71