Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning

Based on the assumption that low-resolution (LR) and high-resolution (HR) manifolds are locally isometric, the neighbor embedding super-resolution algorithms try to preserve the geometry (reconstruction weights) of the LR space for the reconstructed HR space, but neglect the geometry of the original...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 10 vom: 27. Okt., Seite 4220-31
Auteur principal: Jiang, Junjun (Auteur)
Autres auteurs: Hu, Ruimin, Wang, Zhongyuan, Han, Zhen
Format: Article en ligne
Langue:English
Publié: 2014
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't