Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning

Based on the assumption that low-resolution (LR) and high-resolution (HR) manifolds are locally isometric, the neighbor embedding super-resolution algorithms try to preserve the geometry (reconstruction weights) of the LR space for the reconstructed HR space, but neglect the geometry of the original...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 10 vom: 27. Okt., Seite 4220-31
1. Verfasser: Jiang, Junjun (VerfasserIn)
Weitere Verfasser: Hu, Ruimin, Wang, Zhongyuan, Han, Zhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM241081424
003 DE-627
005 20250217094012.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2347201  |2 doi 
028 5 2 |a pubmed25n0803.xml 
035 |a (DE-627)NLM241081424 
035 |a (NLM)25134081 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Junjun  |e verfasserin  |4 aut 
245 1 0 |a Face super-resolution via multilayer locality-constrained iterative neighbor embedding and intermediate dictionary learning 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 03.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Based on the assumption that low-resolution (LR) and high-resolution (HR) manifolds are locally isometric, the neighbor embedding super-resolution algorithms try to preserve the geometry (reconstruction weights) of the LR space for the reconstructed HR space, but neglect the geometry of the original HR space. Due to the degradation process of the LR image (e.g., noisy, blurred, and down-sampled), the neighborhood relationship of the LR space cannot reflect the truth. To this end, this paper proposes a coarse-to-fine face super-resolution approach via a multilayer locality-constrained iterative neighbor embedding technique, which intends to represent the input LR patch while preserving the geometry of original HR space. In particular, we iteratively update the LR patch representation and the estimated HR patch, and meanwhile an intermediate dictionary learning scheme is employed to bridge the LR manifold and original HR manifold. The proposed method can faithfully capture the intrinsic image degradation shift and enhance the consistency between the reconstructed HR manifold and the original HR manifold. Experiments with application to face super-resolution on the CAS-PEAL-R1 database and real-world images demonstrate the power of the proposed algorithm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hu, Ruimin  |e verfasserin  |4 aut 
700 1 |a Wang, Zhongyuan  |e verfasserin  |4 aut 
700 1 |a Han, Zhen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 10 vom: 27. Okt., Seite 4220-31  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:10  |g day:27  |g month:10  |g pages:4220-31 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2347201  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 10  |b 27  |c 10  |h 4220-31