|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM240988027 |
003 |
DE-627 |
005 |
20231224123257.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/eru315
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0803.xml
|
035 |
|
|
|a (DE-627)NLM240988027
|
035 |
|
|
|a (NLM)25124317
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rennenberg, Heinz
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A detailed view on sulphur metabolism at the cellular and whole-plant level illustrates challenges in metabolite flux analyses
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.07.2015
|
500 |
|
|
|a Date Revised 21.10.2014
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a Understanding the dynamics of physiological process in the systems biology era requires approaches at the genome, transcriptome, proteome, and metabolome levels. In this context, metabolite flux experiments have been used in mapping metabolite pathways and analysing metabolic control. In the present review, sulphur metabolism was taken to illustrate current challenges of metabolic flux analyses. At the cellular level, restrictions in metabolite flux analyses originate from incomplete knowledge of the compartmentation network of metabolic pathways. Transport of metabolites through membranes is usually not considered in flux experiments but may be involved in controlling the whole pathway. Hence, steady-state and snapshot readings need to be expanded to time-course studies in combination with compartment-specific metabolite analyses. Because of species-specific differences, differences between tissues, and stress-related responses, the quantitative significance of different sulphur sinks has to be elucidated; this requires the development of methods for whole-sulphur metabolome approaches. Different cell types can contribute to metabolite fluxes to different extents at the tissue and organ level. Cell type-specific analyses are needed to characterize these contributions. Based on such approaches, metabolite flux analyses can be expanded to the whole-plant level by considering long-distance transport and, thus, the interaction of roots and the shoot in metabolite fluxes. However, whole-plant studies need detailed empirical and mathematical modelling that have to be validated by experimental analyses
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Compartmentation
|
650 |
|
4 |
|a membrane transport
|
650 |
|
4 |
|a metabolite flux analyses
|
650 |
|
4 |
|a modelling
|
650 |
|
4 |
|a sulphur flux
|
650 |
|
4 |
|a sulphur reduction and assimilation.
|
650 |
|
7 |
|a Sulfur
|2 NLM
|
650 |
|
7 |
|a 70FD1KFU70
|2 NLM
|
700 |
1 |
|
|a Herschbach, Cornelia
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 65(2014), 20 vom: 01. Nov., Seite 5711-24
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:65
|g year:2014
|g number:20
|g day:01
|g month:11
|g pages:5711-24
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/eru315
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 65
|j 2014
|e 20
|b 01
|c 11
|h 5711-24
|