A universal variational framework for sparsity-based image inpainting

In this paper, we extend an existing universal variational framework for image inpainting with new numerical algorithms. Given certain regularization operator Φ and denoting u the latent image, the basic model is to minimize the l(p), (p=0,1) norm of Φu preserving the pixel values outside the inpain...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 10 vom: 04. Okt., Seite 4242-54
1. Verfasser: Li, Fang (VerfasserIn)
Weitere Verfasser: Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM240971191
003 DE-627
005 20231224123235.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2346030  |2 doi 
028 5 2 |a pubmed24n0803.xml 
035 |a (DE-627)NLM240971191 
035 |a (NLM)25122574 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Fang  |e verfasserin  |4 aut 
245 1 2 |a A universal variational framework for sparsity-based image inpainting 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 03.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we extend an existing universal variational framework for image inpainting with new numerical algorithms. Given certain regularization operator Φ and denoting u the latent image, the basic model is to minimize the l(p), (p=0,1) norm of Φu preserving the pixel values outside the inpainting region. Utilizing the operator splitting technique, the original problem can be approximated by a new problem with extra variable. With the alternating minimization method, the new problem can be decomposed as two subproblems with exact solutions. There are many choices for Φ in our approach such as gradient operator, wavelet transform, framelet transform, or other tight frames. Moreover, with slight modification, we can decouple our framework into two relatively independent parts: 1) denoising and 2) linear combination. Therefore, we can take any denoising method, including BM3D filter in the denoising step. The numerical experiments on various image inpainting tasks, such as scratch and text removal, randomly missing pixel filling, and block completion, clearly demonstrate the super performance of the proposed methods. Furthermore, the theoretical convergence of the proposed algorithms is proved 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 10 vom: 04. Okt., Seite 4242-54  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:10  |g day:04  |g month:10  |g pages:4242-54 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2346030  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 10  |b 04  |c 10  |h 4242-54