The nature of fatty acid interaction with a polyelectrolyte-surfactant pair revealed by NMR spectroscopy

The interaction mechanisms of an oppositely charged polyelectrolyte-surfactant pair and dodecanoic (lauric) acid (LA) were experimentally investigated using a combination of nuclear magnetic resonance (NMR) techniques. It is observed that LA significantly affects the interaction between the anionic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 34 vom: 02. Sept., Seite 10197-205
1. Verfasser: Martinez-Santiago, Jose (VerfasserIn)
Weitere Verfasser: Totland, Christian, Ananthapadmanabhan, Kavssery P, Tsaur, Liang, Somasundaran, Ponisseril
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The interaction mechanisms of an oppositely charged polyelectrolyte-surfactant pair and dodecanoic (lauric) acid (LA) were experimentally investigated using a combination of nuclear magnetic resonance (NMR) techniques. It is observed that LA significantly affects the interaction between the anionic surfactant sodium dodecylethersulfate (SDES) and the cationic polymer guar modified with grafted hydroxypropyl trimethylammonium chloride (Jaguar C13 BF). Typically, oppositely charged polymers and surfactants interact electrostatically at a certain surfactant concentration known as the critical aggregation concentration (CAC). Once the polymer is neutralized by the surfactant, an insoluble complex (precipitate) is observed (phase separation), and, at concentrations beyond the surfactant critical micellar concentration (CMC'), the system returns to a one phase entity. In a system in which a mixture of SDES-LA is added to the polymer, NMR data show that below the neutralization onset, some of the polymer interacts with SDES, while some of the polymer is adsorbed at the surface of LA solid aggregates present in the system. Furthermore, SDES is found to aggregate in a lamellar-like structure at the polymer side chain prior to the SDES CMC'. Above the SDES (CMC'), LA is solubilized and incorporated at the palisade region of SDES micelles. Analysis of (1)H resonances provided estimated concentrations of all species in the system phases at all stages of interaction
Beschreibung:Date Completed 12.05.2015
Date Revised 02.09.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la5020708