Microdroplet evaporation with a forced pinned contact line

Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (i) controlling a droplet's contact line dynamics during evaporation to identifying how the contact line influences evaporative he...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 34 vom: 02. Sept., Seite 10548-55
1. Verfasser: Gleason, Kevin (VerfasserIn)
Weitere Verfasser: Putnam, Shawn A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM240784227
003 DE-627
005 20231224122833.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1021/la501770g  |2 doi 
028 5 2 |a pubmed24n0802.xml 
035 |a (DE-627)NLM240784227 
035 |a (NLM)25102248 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gleason, Kevin  |e verfasserin  |4 aut 
245 1 0 |a Microdroplet evaporation with a forced pinned contact line 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.05.2015 
500 |a Date Revised 02.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (i) controlling a droplet's contact line dynamics during evaporation to identifying how the contact line influences evaporative heat transfer and (ii) validating numerical simulations with experimental data. Droplets are formed on the polymer surface using a bottom-up methodology, where a computer-controlled syringe pump feeds water through a 200 μm diameter fluid channel within the heated polymer substrate. This methodology facilitates precise control of the droplet's growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moatlike trench around the fluid-channel outlet, adding additional control of the droplet's contact line motion, area, and contact angle. In comparison to evaporation on a nonpatterned polymer surface, the laser patterned trench increases contact line pinning time by ∼60% of the droplet's lifetime. Numerical simulations of diffusion controlled evaporation are compared the experimental data with a pinned contact line. These diffusion based simulations consistently over predict the droplet's evaporation rate. In efforts to improve this model, a temperature distribution along the droplet's liquid-vapor interface is imposed to account for the concentration distribution of saturated vapor along the interface, which yields improved predictions within 2-4% of the experimental data throughout the droplet's lifetime on heated substrates 
650 4 |a Journal Article 
700 1 |a Putnam, Shawn A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 30(2014), 34 vom: 02. Sept., Seite 10548-55  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:30  |g year:2014  |g number:34  |g day:02  |g month:09  |g pages:10548-55 
856 4 0 |u http://dx.doi.org/10.1021/la501770g  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 30  |j 2014  |e 34  |b 02  |c 09  |h 10548-55