Efficient immersion imaging of components with nonplanar surfaces

Ultrasonic array inspection of a component with a nonplanar surface can be achieved in immersion using a liquid layer to couple ultrasonic waves from an array probe into a solid structure. This paper presents an efficient way to compute the appropriate element time delays in immersion without compro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 61(2014), 8 vom: 23. Aug., Seite 1284-95
1. Verfasser: Zhang, Jie (VerfasserIn)
Weitere Verfasser: Drinkwater, Bruce, Wilcox, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM240519744
003 DE-627
005 20231224122257.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2014.3035  |2 doi 
028 5 2 |a pubmed24n0801.xml 
035 |a (DE-627)NLM240519744 
035 |a (NLM)25073136 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jie  |e verfasserin  |4 aut 
245 1 0 |a Efficient immersion imaging of components with nonplanar surfaces 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2015 
500 |a Date Revised 30.07.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Ultrasonic array inspection of a component with a nonplanar surface can be achieved in immersion using a liquid layer to couple ultrasonic waves from an array probe into a solid structure. This paper presents an efficient way to compute the appropriate element time delays in immersion without compromising the measurement accuracy. In the proposed imaging process, the surface geometry is first measured ultrasonically by forming an image of the component surface in the couplant. This leads to a set of discrete points that define the surface profile of the component. The propagation time from an array element to a point in the component is then determined by a grid search of candidate ray-paths through each surface point to identify the one that yields the shortest traveling time. Propagation times in the component are first generated on a coarse mesh of points and then these values are linearly interpolated to find the propagation time to each image pixel. The computed propagation times are finally used to reconstruct an image of the component interior. An analytical model is developed to determine a relationship between estimated propagation time errors and their effect on the array inspection in terms of signal amplitude from a reflector. For nominally normal incidence inspection of a metallic component with a minimum surface radius of 30 wavelengths immersed in water, it is found that the surface of the component can be adequately described by points spaced by one wavelength and that delays can be computed on a coarse grid of points spaced at 3 wavelengths. With these parameters, the reduction in amplitude of a point target in the component is shown to be less than 1 dB 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Drinkwater, Bruce  |e verfasserin  |4 aut 
700 1 |a Wilcox, Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 61(2014), 8 vom: 23. Aug., Seite 1284-95  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:61  |g year:2014  |g number:8  |g day:23  |g month:08  |g pages:1284-95 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2014.3035  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2014  |e 8  |b 23  |c 08  |h 1284-95