Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance
A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subseq...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 31 vom: 12. Aug., Seite 9361-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Azo Compounds beta-Cyclodextrins Serum Albumin, Bovine 27432CM55Q azobenzene F0U1H6UG5C betadex JV039JZZ3A mehr... |
Zusammenfassung: | A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subsequently, a series of polymers with different polarities were attached to host molecule β-cyclodextrin (β-CD) to prepare β-CD-containing hemitelechelic polymers via click chemistry. Finally, a photocontrolled silicon wafer surface modified with polymers was fabricated by inclusion complexation between β-CD and Azo, and the surface properties of the substrate are dependent on the polymers we used. The elemental composition, surface morphology, and hydrophilic/hydrophobic property of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope, and contact angle measurements, respectively. The antifouling property of the PEG-functionalized surface was evaluated by a protein adsorption assay using bovine serum albumin, which was also characterized by XPS. The results demonstrate that the surface modified with PEG possesses good protein-resistant properties |
---|---|
Beschreibung: | Date Completed 20.10.2015 Date Revised 16.11.2017 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la500792v |