|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM240323092 |
003 |
DE-627 |
005 |
20250217072541.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2014.201
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0801.xml
|
035 |
|
|
|a (DE-627)NLM240323092
|
035 |
|
|
|a (NLM)25051475
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Larrea, Asun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ten years of industrial and municipal membrane bioreactor (MBR) systems - lessons from the field
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.09.2014
|
500 |
|
|
|a Date Revised 23.07.2014
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies)
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Industrial Waste
|2 NLM
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Rambor, Andre
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fabiyi, Malcolm
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 70(2014), 2 vom: 19., Seite 279-88
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:70
|g year:2014
|g number:2
|g day:19
|g pages:279-88
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2014.201
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 70
|j 2014
|e 2
|b 19
|h 279-88
|