SANASA Capivari II - the first full-scale municipal membrane bioreactor in Latin America

The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned wat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 70(2014), 2 vom: 19., Seite 272-8
1. Verfasser: Pagotto, R (VerfasserIn)
Weitere Verfasser: Rossetto, R, Gasperi, R L P, Andrade, J P, Trovati, J, Vallero, M V G, Okumura, A, Arntsen, B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Membranes, Artificial
Beschreibung
Zusammenfassung:The macro region of Campinas (Brazil) is rapidly evolving with new housing developments and industries, creating the challenge of finding new ways to treat wastewater to a quality that can be reused in order to overcome water scarcity problems. To address this challenge, SANASA (a publicly owned water and wastewater concessionaire from Campinas) has recently constructed the 'EPAR (Water Reuse Production Plant) Capivari II' using the GE ZeeWeed 500D(®) ultrafiltration membrane system. This is the first large-scale membrane bioreactor (MBR) system in Latin America with biological tertiary treatment capability (nitrogen and phosphorus removal), being able to treat an average flow of 182 L/s in its first phase of construction. The filtration system is composed of three membrane trains with more than 36,000 m(2) of total membrane filtration area. The membrane bioreactor (MBR) plant was commissioned in April 2012 and the permeate quality has exceeded expectations. Chemical oxygen demand (COD) removal rates are around and above 97% on a consistent basis, with biochemical oxygen demand (BOD5) and NH3 (ammonia) concentrations at very low levels, and turbidity lower than 0.3 nephelometric turbidity unit (NTU). Treated effluent is sent to a water reuse accumulation tank (from where will be distributed as reuse water), and the excess is discharged into the Capivari River
Beschreibung:Date Completed 11.09.2014
Date Revised 23.07.2014
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2014.204