Robust optical flow integration

We analyze the problem of how to correctly construct dense point trajectories from optical flow fields. First, we show that simple Euler integration is unavoidably inaccurate, no matter how good is the optical flow estimator. Then, an inverse integration scheme is analyzed which is more robust to bi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 1 vom: 14. Jan., Seite 484-98
Auteur principal: Crivelli, Tomas (Auteur)
Autres auteurs: Fradet, Matthieu, Conze, Pierre-Henri, Robert, Philippe, Pérez, Patrick
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652 4500
001 NLM240041437
003 DE-627
005 20250217063846.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2336547  |2 doi 
028 5 2 |a pubmed25n0800.xml 
035 |a (DE-627)NLM240041437 
035 |a (NLM)25020094 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Crivelli, Tomas  |e verfasserin  |4 aut 
245 1 0 |a Robust optical flow integration 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 20.02.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We analyze the problem of how to correctly construct dense point trajectories from optical flow fields. First, we show that simple Euler integration is unavoidably inaccurate, no matter how good is the optical flow estimator. Then, an inverse integration scheme is analyzed which is more robust to bias and input noise and shows better stability properties. Our contribution is threefold: 1) a theoretical analysis that demonstrates why and in what sense inverse integration is more accurate; 2) a rich experimental validation both on synthetic and real (image) data; and 3) an algorithm for approximate online inverse integration. This new technique is precious whether one is trying to propagate information densely available on a reference frame to the other frames in the sequence or, conversely, to assign information densely over each frame by pulling it from the reference 
650 4 |a Journal Article 
700 1 |a Fradet, Matthieu  |e verfasserin  |4 aut 
700 1 |a Conze, Pierre-Henri  |e verfasserin  |4 aut 
700 1 |a Robert, Philippe  |e verfasserin  |4 aut 
700 1 |a Pérez, Patrick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 1 vom: 14. Jan., Seite 484-98  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:1  |g day:14  |g month:01  |g pages:484-98 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2336547  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 1  |b 14  |c 01  |h 484-98