Using EPR spectroscopy as a unique probe of molecular-scale reorganization and solvation in self-assembled gel-phase materials

We describe the synthesis of spin-labeled bis-ureas which coassemble with bis-urea gelators and report on self-assembly as detected using electron paramagnetic resonance spectroscopy (EPR). Specifically, EPR detects the gel-sol transition and allows us to quantify how much spin-label is immobilized...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 30(2014), 30 vom: 05. Aug., Seite 9210-8
1. Verfasser: Caragheorgheopol, Agneta (VerfasserIn)
Weitere Verfasser: Edwards, William, Hardy, John G, Smith, David K, Chechik, Victor
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We describe the synthesis of spin-labeled bis-ureas which coassemble with bis-urea gelators and report on self-assembly as detected using electron paramagnetic resonance spectroscopy (EPR). Specifically, EPR detects the gel-sol transition and allows us to quantify how much spin-label is immobilized within the gel fibers and how much is present in mobile solvent pools-as controlled by temperature, gelator structure, and thermal history. EPR is also able to report on the initial self-assembly processes below the gelation threshold which are not macroscopically visible and appears to be more sensitive than NMR to intermediate-sized nongelating oligomeric species. By studying dilute solutions of gelator molecules and using either single or double spin-labels, EPR allows quantification of the initial steps of the hierarchical self-assembly process in terms of cooperativity and association constant. Finally, EPR enables us to estimate the degree of gel-fiber solvation by probing the distances between spin-labels. Comparison of experimental data against the predicted distances assuming the nanofibers are only composed of gelator molecules indicates a significant difference, which can be assigned to the presence of a quantifiable number of explicit solvent molecules. In summary, EPR provides unique data and yields powerful insight into how molecular-scale mobility and solvation impact on assembly of supramolecular gels
Beschreibung:Date Completed 11.05.2015
Date Revised 05.08.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la501641q