Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator
We study free vibrations of an elliptical crystal resonator of AT-cut quartz with an optimal ratio between the semi-major and semi-minor axes as defined by Mindlin. The resonator is contoured with a quadratic thickness variation. The scalar equation for thickness-shear modes in an AT-cut quartz plat...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 60(2013), 6 vom: 15. Juni, Seite 1192-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2013
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. |
Zusammenfassung: | We study free vibrations of an elliptical crystal resonator of AT-cut quartz with an optimal ratio between the semi-major and semi-minor axes as defined by Mindlin. The resonator is contoured with a quadratic thickness variation. The scalar equation for thickness-shear modes in an AT-cut quartz plate by Tiersten and Smythe is used. Analytical solutions for the frequencies and modes to the scalar equation are obtained using a power series expansion that converges rapidly. The frequencies and modes are exact in the sense that they can satisfy the scalar differential equation and the free edge condition to any desired accuracy. They are simple and can be used conveniently for further studies on other effects on frequencies and modes of contoured resonators |
---|---|
Beschreibung: | Date Completed 11.05.2015 Date Revised 09.07.2014 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1525-8955 |
DOI: | 10.1109/TUFFC.2013.2681 |