Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum

© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 204(2014), 3 vom: 21. Nov., Seite 521-535
1. Verfasser: Fabris, Michele (VerfasserIn)
Weitere Verfasser: Matthijs, Michiel, Carbonelle, Sophie, Moses, Tessa, Pollier, Jacob, Dasseville, Renaat, Baart, Gino J E, Vyverman, Wim, Goossens, Alain
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phaeodactylum tricornutum chimeric pathway diatom fusion enzymes isopentenyl diphosphate isomerase oxidosqualene cyclase squalene epoxidase sterol biosynthesis mehr... Sterols Mevalonic Acid S5UOB36OCZ
Beschreibung
Zusammenfassung:© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the pathway leading to sterol biosynthesis in diatoms has remained hitherto unidentified. Through the DiatomCyc database we reconstructed the mevalonate and sterol biosynthetic pathways of the model diatom Phaeodactylum tricornutum in silico. We experimentally verified the predicted pathways using enzyme inhibitor, gene silencing and heterologous gene expression approaches. Our analysis revealed a peculiar, chimeric organization of the diatom sterol biosynthesis pathway, which possesses features of both plant and fungal pathways. Strikingly, it lacks a conventional squalene epoxidase and utilizes an extended oxidosqualene cyclase and a multifunctional isopentenyl diphosphate isomerase/squalene synthase enzyme. The reconstruction of the P. tricornutum sterol pathway underscores the metabolic plasticity of diatoms and offers important insights for the engineering of diatoms for sustainable production of biofuels and high-value chemicals
Beschreibung:Date Completed 01.06.2015
Date Revised 30.03.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.12917