CSMMI : class-specific maximization of mutual information for action and gesture recognition

In this paper, we propose a novel approach called class-specific maximization of mutual information (CSMMI) using a submodular method, which aims at learning a compact and discriminative dictionary for each class. Unlike traditional dictionary-based algorithms, which typically learn a shared diction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 7 vom: 21. Juli, Seite 3152-65
1. Verfasser: Wan, Jun (VerfasserIn)
Weitere Verfasser: Athitsos, Vassilis, Jangyodsuk, Pat, Escalante, Hugo Jair, Ruan, Qiuqi, Guyon, Isabelle
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM239698908
003 DE-627
005 20231224120524.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0799.xml 
035 |a (DE-627)NLM239698908 
035 |a (NLM)24983106 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Jun  |e verfasserin  |4 aut 
245 1 0 |a CSMMI  |b class-specific maximization of mutual information for action and gesture recognition 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.10.2015 
500 |a Date Revised 27.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a novel approach called class-specific maximization of mutual information (CSMMI) using a submodular method, which aims at learning a compact and discriminative dictionary for each class. Unlike traditional dictionary-based algorithms, which typically learn a shared dictionary for all of the classes, we unify the intraclass and interclass mutual information (MI) into an single objective function to optimize class-specific dictionary. The objective function has two aims: 1) maximizing the MI between dictionary items within a specific class (intrinsic structure) and 2) minimizing the MI between the dictionary items in a given class and those of the other classes (extrinsic structure). We significantly reduce the computational complexity of CSMMI by introducing an novel submodular method, which is one of the important contributions of this paper. This paper also contributes a state-of-the-art end-to-end system for action and gesture recognition incorporating CSMMI, with feature extraction, learning initial dictionary per each class by sparse coding, CSMMI via submodularity, and classification based on reconstruction errors. We performed extensive experiments on synthetic data and eight benchmark data sets. Our experimental results show that CSMMI outperforms shared dictionary methods and that our end-to-end system is competitive with other state-of-the-art approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Athitsos, Vassilis  |e verfasserin  |4 aut 
700 1 |a Jangyodsuk, Pat  |e verfasserin  |4 aut 
700 1 |a Escalante, Hugo Jair  |e verfasserin  |4 aut 
700 1 |a Ruan, Qiuqi  |e verfasserin  |4 aut 
700 1 |a Guyon, Isabelle  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 7 vom: 21. Juli, Seite 3152-65  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:7  |g day:21  |g month:07  |g pages:3152-65 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 7  |b 21  |c 07  |h 3152-65