High-yielding and photolabile approaches to the covalent attachment of biomolecules to surfaces via hydrazone chemistry

The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation--the reaction of a hydrazine with an aldehyde or ketone--as both hydrazines...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 30(2014), 28 vom: 22. Juli, Seite 8452-60
1. Verfasser: Lee, Ju Hun (VerfasserIn)
Weitere Verfasser: Domaille, Dylan W, Noh, Hyunwoo, Oh, Taeseok, Choi, Chulmin, Jin, Sungho, Cha, Jennifer N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Aldehydes Hydrazines Hydrazones Ketones Proteins hydrazine 27RFH0GB4R DNA 9007-49-2
Beschreibung
Zusammenfassung:The development of strategies to couple biomolecules covalently to surfaces is necessary for constructing sensing arrays for biological and biomedical applications. One attractive conjugation reaction is hydrazone formation--the reaction of a hydrazine with an aldehyde or ketone--as both hydrazines and aldehydes/ketones are largely bioorthogonal, which makes this particular reaction suitable for conjugating biomolecules to a variety of substrates. We show that the mild reaction conditions afforded by hydrazone conjugation enable the conjugation of DNA and proteins to the substrate surface in significantly higher yields than can be achieved with traditional bioconjugation techniques, such as maleimide chemistry. Next, we designed and synthesized a photocaged aryl ketone that can be conjugated to a surface and photochemically activated to provide a suitable partner for subsequent hydrazone formation between the surface-anchored ketone and DNA- or protein-hydrazines. Finally, we exploit the latent functionality of the photocaged ketone and pattern multiple biomolecules on the same substrate, effectively demonstrating a strategy for designing substrates with well-defined domains of different biomolecules. We expect that this approach can be extended to the production of multiplexed assays by using an appropriate mask with sequential photoexposure and biomolecule conjugation steps
Beschreibung:Date Completed 11.05.2015
Date Revised 22.07.2014
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la500744s