Learning object-to-class kernels for scene classification

High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 8 vom: 24. Aug., Seite 3241-53
1. Verfasser: Zhang, Lei (VerfasserIn)
Weitere Verfasser: Zhen, Xiantong, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM239477731
003 DE-627
005 20231224120033.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2328894  |2 doi 
028 5 2 |a pubmed24n0798.xml 
035 |a (DE-627)NLM239477731 
035 |a (NLM)24960104 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lei  |e verfasserin  |4 aut 
245 1 0 |a Learning object-to-class kernels for scene classification 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 25.06.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a High-level image representations have drawn increasing attention in visual recognition, e.g., scene classification, since the invention of the object bank. The object bank represents an image as a response map of a large number of pretrained object detectors and has achieved superior performance for visual recognition. In this paper, based on the object bank representation, we propose the object-to-class (O2C) distances to model scene images. In particular, four variants of O2C distances are presented, and with the O2C distances, we can represent the images using the object bank by lower-dimensional but more discriminative spaces, called distance spaces, which are spanned by the O2C distances. Due to the explicit computation of O2C distances based on the object bank, the obtained representations can possess more semantic meanings. To combine the discriminant ability of the O2C distances to all scene classes, we further propose to kernalize the distance representation for the final classification. We have conducted extensive experiments on four benchmark data sets, UIUC-Sports, Scene-15, MIT Indoor, and Caltech-101, which demonstrate that the proposed approaches can significantly improve the original object bank approach and achieve the state-of-the-art performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhen, Xiantong  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 8 vom: 24. Aug., Seite 3241-53  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:8  |g day:24  |g month:08  |g pages:3241-53 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2328894  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 8  |b 24  |c 08  |h 3241-53