Structure-preserving sparse decomposition for facial expression analysis

Although facial expressions can be decomposed in terms of action units (AUs) as suggested by the facial action coding system, there have been only a few attempts that recognize expression using AUs and their composition rules. In this paper, we propose a dictionary-based approach for facial expressi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 8 vom: 08. Aug., Seite 3590-603
1. Verfasser: Taheri, Sima (VerfasserIn)
Weitere Verfasser: Qiang Qiu, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM239441443
003 DE-627
005 20231224115944.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2331141  |2 doi 
028 5 2 |a pubmed24n0798.xml 
035 |a (DE-627)NLM239441443 
035 |a (NLM)24956366 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Taheri, Sima  |e verfasserin  |4 aut 
245 1 0 |a Structure-preserving sparse decomposition for facial expression analysis 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2015 
500 |a Date Revised 15.08.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Although facial expressions can be decomposed in terms of action units (AUs) as suggested by the facial action coding system, there have been only a few attempts that recognize expression using AUs and their composition rules. In this paper, we propose a dictionary-based approach for facial expression analysis by decomposing expressions in terms of AUs. First, we construct an AU-dictionary using domain experts' knowledge of AUs. To incorporate the high-level knowledge regarding expression decomposition and AUs, we then perform structure-preserving sparse coding by imposing two layers of grouping over AU-dictionary atoms as well as over the test image matrix columns. We use the computed sparse code matrix for each expressive face to perform expression decomposition and recognition. Since domain experts' knowledge may not always be available for constructing an AU-dictionary, we also propose a structure-preserving dictionary learning algorithm, which we use to learn a structured dictionary as well as divide expressive faces into several semantic regions. Experimental results on publicly available expression data sets demonstrate the effectiveness of the proposed approach for facial expression analysis 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Qiang Qiu  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 8 vom: 08. Aug., Seite 3590-603  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:8  |g day:08  |g month:08  |g pages:3590-603 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2331141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 8  |b 08  |c 08  |h 3590-603