Dynamically removing false features in pyramidal lucas-kanade registration

Pyramidal Lucas-Kanade (LK) optical flow is a real-time registration technique widely employed by a variety of cutting edge consumer applications. Traditionally, the LK algorithm is applied selectively to image feature points that have strong spatial variation, which include outliers in textured are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 8 vom: 08. Aug., Seite 3535-44
1. Verfasser: Niu, Yan (VerfasserIn)
Weitere Verfasser: Xu, Zhiwen, Che, Xiangjiu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM239441435
003 DE-627
005 20231224115944.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2331140  |2 doi 
028 5 2 |a pubmed24n0798.xml 
035 |a (DE-627)NLM239441435 
035 |a (NLM)24956365 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niu, Yan  |e verfasserin  |4 aut 
245 1 0 |a Dynamically removing false features in pyramidal lucas-kanade registration 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 15.08.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pyramidal Lucas-Kanade (LK) optical flow is a real-time registration technique widely employed by a variety of cutting edge consumer applications. Traditionally, the LK algorithm is applied selectively to image feature points that have strong spatial variation, which include outliers in textured areas. To detect and discard the falsely selected features, previous methods generally assess the goodness of each feature after the flow computation is completed. Such a screening process incurs additional cost. This paper provides a handy (but not obvious) tool for the users of the LK algorithm to remove false features without degrading the algorithm's efficiency. We propose a confidence predictor, which evaluates the ill-posedness of an LK system directly from the underlying data, at a cost lower than solving the system. We then incorporate our confidence predictor into the course-to-fine LK registration to dynamically detect false features and terminate their flow computation at an early stage. This improves the registration accuracy by preventing the error propagation and maintains (or increases) the computation speed by saving the runtime on false features. Experimental results on state-of-the-art benchmarks validate that our method is more accurate and efficient than related works 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xu, Zhiwen  |e verfasserin  |4 aut 
700 1 |a Che, Xiangjiu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 8 vom: 08. Aug., Seite 3535-44  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:8  |g day:08  |g month:08  |g pages:3535-44 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2331140  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 8  |b 08  |c 08  |h 3535-44