|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM239395956 |
003 |
DE-627 |
005 |
20231224115846.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2014 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2014.2329767
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0798.xml
|
035 |
|
|
|a (DE-627)NLM239395956
|
035 |
|
|
|a (NLM)24951694
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Veganzones, Miguel A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation
|
264 |
|
1 |
|c 2014
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 29.09.2015
|
500 |
|
|
|a Date Revised 20.10.2017
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear spectral unmixing consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Tochon, Guillaume
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dalla-Mura, Mauro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Plaza, Antonio J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chanussot, Jocelyn
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 23(2014), 8 vom: 20. Aug., Seite 3574-3589
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2014
|g number:8
|g day:20
|g month:08
|g pages:3574-3589
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2014.2329767
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2014
|e 8
|b 20
|c 08
|h 3574-3589
|