Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation

The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal part...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 8 vom: 20. Aug., Seite 3574-3589
1. Verfasser: Veganzones, Miguel A (VerfasserIn)
Weitere Verfasser: Tochon, Guillaume, Dalla-Mura, Mauro, Plaza, Antonio J, Chanussot, Jocelyn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM239395956
003 DE-627
005 20231224115846.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2329767  |2 doi 
028 5 2 |a pubmed24n0798.xml 
035 |a (DE-627)NLM239395956 
035 |a (NLM)24951694 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Veganzones, Miguel A  |e verfasserin  |4 aut 
245 1 0 |a Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2015 
500 |a Date Revised 20.10.2017 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The binary partition tree (BPT) is a hierarchical region-based representation of an image in a tree structure. The BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear spectral unmixing consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tochon, Guillaume  |e verfasserin  |4 aut 
700 1 |a Dalla-Mura, Mauro  |e verfasserin  |4 aut 
700 1 |a Plaza, Antonio J  |e verfasserin  |4 aut 
700 1 |a Chanussot, Jocelyn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 8 vom: 20. Aug., Seite 3574-3589  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:8  |g day:20  |g month:08  |g pages:3574-3589 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2329767  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 8  |b 20  |c 08  |h 3574-3589