Direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance

Graphene-like nitrogen-doped carbon nanosheets (NCN) have become a fascinating carbon-based material for advanced energy storage and conversion devices, but its easy, cheap, and environmentally friendly synthesis is still a grand challenge. Herein we directly synthesized porous NCN material via the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 27 vom: 15. Juli, Seite 8238-45
1. Verfasser: Liu, Qiao (VerfasserIn)
Weitere Verfasser: Duan, Youxin, Zhao, Qiuping, Pan, Fuping, Zhang, Bin, Zhang, Junyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Graphene-like nitrogen-doped carbon nanosheets (NCN) have become a fascinating carbon-based material for advanced energy storage and conversion devices, but its easy, cheap, and environmentally friendly synthesis is still a grand challenge. Herein we directly synthesized porous NCN material via the facile pyrolysis of chitosan and urea without the requirement of any catalyst or post-treatment. As-prepared material exhibits a very large BET surface area of ~1510 m(2) g(-1) and a high ratio of graphitic/pyridinic nitrogen structure (2.69 at. % graphitic N and 1.20 at. % pyridinic N). Moreover, compared to a commercial Pt/C catalyst, NCN displays excellent electrocatalytic activity, better long-term stability, and methanol tolerance ability toward the oxygen reduction reaction, indicating a promising metal-free alternative to Pt-based cathode catalysts in alkaline fuel cells. This scalable fabrication method supplies a low-cost, high-efficiency metal-free oxygen reduction electrocatalyst and also suggests an economic and sustainable route from biomass-based molecules to value-added nanocarbon materials
Beschreibung:Date Completed 22.04.2015
Date Revised 15.07.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la404995y