Targeted Lung Delivery of Nasally Administered Aerosols

Using the nasal route to deliver pharmaceutical aerosols to the lungs has a number of advantages including co-administration during non-invasive ventilation. The objective of this study was to evaluate the growth and deposition characteristics of nasally administered aerosol throughout the conductin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Aerosol science and technology : the journal of the American Association for Aerosol Research. - 1989. - 48(2014), 4 vom: 01., Seite 434-449
1. Verfasser: Tian, Geng (VerfasserIn)
Weitere Verfasser: Hindle, Michael, Longest, P Worth
Format: Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Aerosol science and technology : the journal of the American Association for Aerosol Research
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Using the nasal route to deliver pharmaceutical aerosols to the lungs has a number of advantages including co-administration during non-invasive ventilation. The objective of this study was to evaluate the growth and deposition characteristics of nasally administered aerosol throughout the conducting airways based on delivery with streamlined interfaces implementing two forms of controlled condensational growth technology. Characteristic conducting airways were considered including a nose-mouth-throat (NMT) geometry, complete upper tracheobronchial (TB) model through the third bifurcation (B3), and stochastic individual path (SIP) model to the terminal bronchioles (B15). Previously developed streamlined nasal cannula interfaces were used for the delivery of submicrometer particles using either enhanced condensational growth (ECG) or excipient enhanced growth (EEG) techniques. Computational fluid dynamics (CFD) simulations predicted aerosol transport, growth and deposition for a control (4.7 μm) and three submicrometer condensational aerosols with budesonide as a model insoluble drug. Depositional losses with condensational aerosols in the cannula and NMT were less than 5% of the initial dose, which represents an order-of-magnitude reduction compared to the control. The condensational growth techniques increased the TB dose by a factor of 1.1-2.6x, delivered at least 70% of the dose to the alveolar region, and produced final aerosol sizes ≥2.5 μm. Compared to multiple commercial orally inhaled products, the nose-to-lung delivery approach increased dose to the biologically important lower TB region by factors as large as 35x. In conclusion, nose-to-lung delivery with streamlined nasal cannulas and condensational aerosols was highly efficient and targeted deposition to the lower TB and alveolar regions
Beschreibung:Date Revised 21.10.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0278-6826