Fast stray field computation on tensor grids

A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear...

Description complète

Détails bibliographiques
Publié dans:Journal of computational physics. - 1986. - 231(2012), 7 vom: 01. Apr., Seite 2840-2850
Auteur principal: Exl, L (Auteur)
Autres auteurs: Auzinger, W, Bance, S, Gusenbauer, M, Reichel, F, Schrefl, T
Format: Article
Langue:English
Publié: 2012
Accès à la collection:Journal of computational physics
Sujets:Journal Article Canonical format Low-rank Micromagnetics Stray field Tensor grids Tucker tensor
LEADER 01000caa a22002652c 4500
001 NLM239004582
003 DE-627
005 20250217035211.0
007 tu
008 231224s2012 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0796.xml 
035 |a (DE-627)NLM239004582 
035 |a (NLM)24910469 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Exl, L  |e verfasserin  |4 aut 
245 1 0 |a Fast stray field computation on tensor grids 
264 1 |c 2012 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 21.10.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A direct integration algorithm is described to compute the magnetostatic field and energy for given magnetization distributions on not necessarily uniform tensor grids. We use an analytically-based tensor approximation approach for function-related tensors, which reduces calculations to multilinear algebra operations. The algorithm scales with N4/3 for N computational cells used and with N2/3 (sublinear) when magnetization is given in canonical tensor format. In the final section we confirm our theoretical results concerning computing times and accuracy by means of numerical examples 
650 4 |a Journal Article 
650 4 |a Canonical format 
650 4 |a Low-rank 
650 4 |a Micromagnetics 
650 4 |a Stray field 
650 4 |a Tensor grids 
650 4 |a Tucker tensor 
700 1 |a Auzinger, W  |e verfasserin  |4 aut 
700 1 |a Bance, S  |e verfasserin  |4 aut 
700 1 |a Gusenbauer, M  |e verfasserin  |4 aut 
700 1 |a Reichel, F  |e verfasserin  |4 aut 
700 1 |a Schrefl, T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 231(2012), 7 vom: 01. Apr., Seite 2840-2850  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnas 
773 1 8 |g volume:231  |g year:2012  |g number:7  |g day:01  |g month:04  |g pages:2840-2850 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 231  |j 2012  |e 7  |b 01  |c 04  |h 2840-2850