Terrestrial gross primary production inferred from satellite fluorescence and vegetation models

© 2014 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 20(2014), 10 vom: 08. Okt., Seite 3103-21
1. Verfasser: Parazoo, Nicholas C (VerfasserIn)
Weitere Verfasser: Bowman, Kevin, Fisher, Joshua B, Frankenberg, Christian, Jones, Dylan B A, Cescatti, Alessandro, Pérez-Priego, Oscar, Wohlfahrt, Georg, Montagnani, Leonardo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. amazon carbon cycle climate change flux towers model benchmarking water stress Chlorophyll 1406-65-1
LEADER 01000naa a22002652 4500
001 NLM238997553
003 DE-627
005 20231224115005.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.12652  |2 doi 
028 5 2 |a pubmed24n0796.xml 
035 |a (DE-627)NLM238997553 
035 |a (NLM)24909755 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parazoo, Nicholas C  |e verfasserin  |4 aut 
245 1 0 |a Terrestrial gross primary production inferred from satellite fluorescence and vegetation models 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2015 
500 |a Date Revised 13.09.2014 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 John Wiley & Sons Ltd. 
520 |a Determining the spatial and temporal distribution of terrestrial gross primary production (GPP) is a critical step in closing the Earth's carbon budget. Dynamical global vegetation models (DGVMs) provide mechanistic insight into GPP variability but diverge in predicting the response to climate in poorly investigated regions. Recent advances in the remote sensing of solar-induced chlorophyll fluorescence (SIF) opens up a new possibility to provide direct global observational constraints for GPP. Here, we apply an optimal estimation approach to infer the global distribution of GPP from an ensemble of eight DGVMs constrained by global measurements of SIF from the Greenhouse Gases Observing SATellite (GOSAT). These estimates are compared to flux tower data in N. America, Europe, and tropical S. America, with careful consideration of scale differences between models, GOSAT, and flux towers. Assimilation of GOSAT SIF with DGVMs causes a redistribution of global productivity from northern latitudes to the tropics of 7-8 Pg C yr(-1) from 2010 to 2012, with reduced GPP in northern forests (~3.6 Pg C yr(-1) ) and enhanced GPP in tropical forests (~3.7 Pg C yr(-1) ). This leads to improvements in the structure of the seasonal cycle, including earlier dry season GPP loss and enhanced peak-to-trough GPP in tropical forests within the Amazon Basin and reduced growing season length in northern croplands and deciduous forests. Uncertainty in predicted GPP (estimated from the spread of DGVMs) is reduced by 40-70% during peak productivity suggesting the assimilation of GOSAT SIF with models is well-suited for benchmarking. We conclude that satellite fluorescence augurs a new opportunity to quantify the GPP response to climate drivers and the potential to constrain predictions of carbon cycle evolution 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a amazon 
650 4 |a carbon cycle 
650 4 |a climate change 
650 4 |a flux towers 
650 4 |a model benchmarking 
650 4 |a water stress 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
700 1 |a Bowman, Kevin  |e verfasserin  |4 aut 
700 1 |a Fisher, Joshua B  |e verfasserin  |4 aut 
700 1 |a Frankenberg, Christian  |e verfasserin  |4 aut 
700 1 |a Jones, Dylan B A  |e verfasserin  |4 aut 
700 1 |a Cescatti, Alessandro  |e verfasserin  |4 aut 
700 1 |a Pérez-Priego, Oscar  |e verfasserin  |4 aut 
700 1 |a Wohlfahrt, Georg  |e verfasserin  |4 aut 
700 1 |a Montagnani, Leonardo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 20(2014), 10 vom: 08. Okt., Seite 3103-21  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:20  |g year:2014  |g number:10  |g day:08  |g month:10  |g pages:3103-21 
856 4 0 |u http://dx.doi.org/10.1111/gcb.12652  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 20  |j 2014  |e 10  |b 08  |c 10  |h 3103-21