Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves

Copyright © 2014 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 82(2014) vom: 23. Sept., Seite 85-8
1. Verfasser: Liu, Meijun (VerfasserIn)
Weitere Verfasser: Zhang, Zishan, Gao, Huiyuan, Yang, Cheng, Fan, Xingli, Cheng, Dandan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Dehydration degree Dehydration duration PEG PSII photochemical activity Papaya Photosystem II Protein Complex
Beschreibung
Zusammenfassung:Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained
Beschreibung:Date Completed 30.03.2015
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2014.05.003