Rootstock alleviates PEG-induced water stress in grafted pepper seedlings : physiological responses

Copyright © 2014 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 171(2014), 10 vom: 15. Juni, Seite 842-51
1. Verfasser: Penella, Consuelo (VerfasserIn)
Weitere Verfasser: Nebauer, Sergio G, Bautista, Alberto San, López-Galarza, Salvador, Calatayud, Ángeles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Graft Osmotic potential Pepper Photosynthesis Water stress Antioxidants Plant Proteins Water mehr... 059QF0KO0R Chlorophyll 1406-65-1 Polyethylene Glycols 3WJQ0SDW1A Proline 9DLQ4CIU6V Nitrate Reductase EC 1.7.99.4
LEADER 01000naa a22002652 4500
001 NLM238697509
003 DE-627
005 20231224114341.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2014.01.013  |2 doi 
028 5 2 |a pubmed24n0795.xml 
035 |a (DE-627)NLM238697509 
035 |a (NLM)24877676 
035 |a (PII)S0176-1617(14)00041-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Penella, Consuelo  |e verfasserin  |4 aut 
245 1 0 |a Rootstock alleviates PEG-induced water stress in grafted pepper seedlings  |b physiological responses 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2015 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2014 Elsevier GmbH. All rights reserved. 
520 |a Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased nitrate reductase activity in the roots was observed, mainly in plants grafted onto the sensitive rootstocks, as well as the ungrafted plants, and this was associated with the lessened flux to the leaves. This study suggests that PEG-induced water stress can be partially alleviated by using tolerant accessions as rootstocks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Graft 
650 4 |a Osmotic potential 
650 4 |a Pepper 
650 4 |a Photosynthesis 
650 4 |a Water stress 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
650 7 |a Proline  |2 NLM 
650 7 |a 9DLQ4CIU6V  |2 NLM 
650 7 |a Nitrate Reductase  |2 NLM 
650 7 |a EC 1.7.99.4  |2 NLM 
700 1 |a Nebauer, Sergio G  |e verfasserin  |4 aut 
700 1 |a Bautista, Alberto San  |e verfasserin  |4 aut 
700 1 |a López-Galarza, Salvador  |e verfasserin  |4 aut 
700 1 |a Calatayud, Ángeles  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 171(2014), 10 vom: 15. Juni, Seite 842-51  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:171  |g year:2014  |g number:10  |g day:15  |g month:06  |g pages:842-51 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2014.01.013  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 171  |j 2014  |e 10  |b 15  |c 06  |h 842-51