Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants

Copyright © 2014 Elsevier GmbH. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 171(2014), 10 vom: 15. Juni, Seite 779-88
1. Verfasser: Ikbal, Fatima Ezzohra (VerfasserIn)
Weitere Verfasser: Hernández, José Antonio, Barba-Espín, Gregorio, Koussa, Tayeb, Aziz, Aziz, Faize, Mohamed, Diaz-Vivancos, Pedro
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antioxidative metabolism Grapevine Photosynthesis Polyamines Salt stress Antioxidants Plant Growth Regulators Plant Proteins mehr... Reactive Oxygen Species Chlorophyll 1406-65-1 Sodium Chloride 451W47IQ8X Adenosylmethionine Decarboxylase EC 4.1.1.50 Glutathione GAN16C9B8O Mitoguazone OD5Q0L447W Ascorbic Acid PQ6CK8PD0R
LEADER 01000naa a22002652 4500
001 NLM238697436
003 DE-627
005 20231224114341.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jplph.2014.02.006  |2 doi 
028 5 2 |a pubmed24n0795.xml 
035 |a (DE-627)NLM238697436 
035 |a (NLM)24877669 
035 |a (PII)S0176-1617(14)00051-0 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ikbal, Fatima Ezzohra  |e verfasserin  |4 aut 
245 1 0 |a Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.01.2015 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2014 Elsevier GmbH. All rights reserved. 
520 |a The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Antioxidative metabolism 
650 4 |a Grapevine 
650 4 |a Photosynthesis 
650 4 |a Polyamines 
650 4 |a Salt stress 
650 7 |a Antioxidants  |2 NLM 
650 7 |a Plant Growth Regulators  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Polyamines  |2 NLM 
650 7 |a Reactive Oxygen Species  |2 NLM 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
650 7 |a Sodium Chloride  |2 NLM 
650 7 |a 451W47IQ8X  |2 NLM 
650 7 |a Adenosylmethionine Decarboxylase  |2 NLM 
650 7 |a EC 4.1.1.50  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a Mitoguazone  |2 NLM 
650 7 |a OD5Q0L447W  |2 NLM 
650 7 |a Ascorbic Acid  |2 NLM 
650 7 |a PQ6CK8PD0R  |2 NLM 
700 1 |a Hernández, José Antonio  |e verfasserin  |4 aut 
700 1 |a Barba-Espín, Gregorio  |e verfasserin  |4 aut 
700 1 |a Koussa, Tayeb  |e verfasserin  |4 aut 
700 1 |a Aziz, Aziz  |e verfasserin  |4 aut 
700 1 |a Faize, Mohamed  |e verfasserin  |4 aut 
700 1 |a Diaz-Vivancos, Pedro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of plant physiology  |d 1979  |g 171(2014), 10 vom: 15. Juni, Seite 779-88  |w (DE-627)NLM098174622  |x 1618-1328  |7 nnns 
773 1 8 |g volume:171  |g year:2014  |g number:10  |g day:15  |g month:06  |g pages:779-88 
856 4 0 |u http://dx.doi.org/10.1016/j.jplph.2014.02.006  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 171  |j 2014  |e 10  |b 15  |c 06  |h 779-88