Visualizing energy landscapes with metric disconnectivity graphs

Copyright © 2014 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 35(2014), 20 vom: 30. Juli, Seite 1481-90
1. Verfasser: Smeeton, Lewis C (VerfasserIn)
Weitere Verfasser: Oakley, Mark T, Johnston, Roy L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Python coarse-grained models collective variables protein software
LEADER 01000caa a22002652 4500
001 NLM238602796
003 DE-627
005 20250217022353.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23643  |2 doi 
028 5 2 |a pubmed25n0795.xml 
035 |a (DE-627)NLM238602796 
035 |a (NLM)24866379 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Smeeton, Lewis C  |e verfasserin  |4 aut 
245 1 0 |a Visualizing energy landscapes with metric disconnectivity graphs 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2015 
500 |a Date Revised 21.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright © 2014 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc. 
520 |a The visualization of multidimensional energy landscapes is important, providing insight into the kinetics and thermodynamics of a system, as well the range of structures a system can adopt. It is, however, highly nontrivial, with the number of dimensions required for a faithful reproduction of the landscape far higher than can be represented in two or three dimensions. Metric disconnectivity graphs provide a possible solution, incorporating the landscape connectivity information present in disconnectivity graphs with structural information in the form of a metric. In this study, we present a new software package, PyConnect, which is capable of producing both disconnectivity graphs and metric disconnectivity graphs in two or three dimensions. We present as a test case the analysis of the 69-bead BLN coarse-grained model protein and show that, by choosing appropriate order parameters, metric disconnectivity graphs can resolve correlations between structural features on the energy landscape with the landscapes energetic and kinetic properties 
650 4 |a Journal Article 
650 4 |a Python 
650 4 |a coarse-grained models 
650 4 |a collective variables 
650 4 |a protein 
650 4 |a software 
700 1 |a Oakley, Mark T  |e verfasserin  |4 aut 
700 1 |a Johnston, Roy L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 35(2014), 20 vom: 30. Juli, Seite 1481-90  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:35  |g year:2014  |g number:20  |g day:30  |g month:07  |g pages:1481-90 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23643  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2014  |e 20  |b 30  |c 07  |h 1481-90