BRINT : binary rotation invariant and noise tolerant texture classification

In this paper, we propose a simple, efficient, yet robust multiresolution approach to texture classification-binary rotation invariant and noise tolerant (BRINT). The proposed approach is very fast to build, very compact while remaining robust to illumination variations, rotation changes, and noise....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 7 vom: 23. Juli, Seite 3071-84
1. Verfasser: Liu, Li (VerfasserIn)
Weitere Verfasser: Long, Yunli, Fieguth, Paul W, Lao, Songyang, Zhao, Guoying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM238546845
003 DE-627
005 20231224114029.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0795.xml 
035 |a (DE-627)NLM238546845 
035 |a (NLM)24860030 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Li  |e verfasserin  |4 aut 
245 1 0 |a BRINT  |b binary rotation invariant and noise tolerant texture classification 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 30.06.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a simple, efficient, yet robust multiresolution approach to texture classification-binary rotation invariant and noise tolerant (BRINT). The proposed approach is very fast to build, very compact while remaining robust to illumination variations, rotation changes, and noise. We develop a novel and simple strategy to compute a local binary descriptor based on the conventional local binary pattern (LBP) approach, preserving the advantageous characteristics of uniform LBP. Points are sampled in a circular neighborhood, but keeping the number of bins in a single-scale LBP histogram constant and small, such that arbitrarily large circular neighborhoods can be sampled and compactly encoded over a number of scales. There is no necessity to learn a texton dictionary, as in methods based on clustering, and no tuning of parameters is required to deal with different data sets. Extensive experimental results on representative texture databases show that the proposed BRINT not only demonstrates superior performance to a number of recent state-of-the-art LBP variants under normal conditions, but also performs significantly and consistently better in presence of noise due to its high distinctiveness and robustness. This noise robustness characteristic of the proposed BRINT is evaluated quantitatively with different artificially generated types and levels of noise (including Gaussian, salt and pepper, and speckle noise) in natural texture images 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Long, Yunli  |e verfasserin  |4 aut 
700 1 |a Fieguth, Paul W  |e verfasserin  |4 aut 
700 1 |a Lao, Songyang  |e verfasserin  |4 aut 
700 1 |a Zhao, Guoying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 7 vom: 23. Juli, Seite 3071-84  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:7  |g day:23  |g month:07  |g pages:3071-84 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 7  |b 23  |c 07  |h 3071-84