Janus magnetic nanoparticles with a bicompartmental polymer brush prepared using electrostatic adsorption to facilitate toposelective surface-initiated ATRP

Utilizing the inherent negative charge of mica surfaces, amine-functionalized magnetic nanoparticles (Fe3O4/NH2) were electrostatically adsorbed onto the mica such that surface-initiated ATRP could be used to grow poly(n-isopropylacrylamide) (PNIPAM) from the exposed hemisphere. By reducing the solu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 23 vom: 17. Juni, Seite 6858-66
1. Verfasser: Vasquez, Erick S (VerfasserIn)
Weitere Verfasser: Chu, I-Wei, Walters, Keisha B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Utilizing the inherent negative charge of mica surfaces, amine-functionalized magnetic nanoparticles (Fe3O4/NH2) were electrostatically adsorbed onto the mica such that surface-initiated ATRP could be used to grow poly(n-isopropylacrylamide) (PNIPAM) from the exposed hemisphere. By reducing the solution pH, a positive charge generated on the mica was used to release the nanoparticles from the substrate. A second ATRP reaction was carried out to grow poly(methacrylic acid) (PMAA) from the initiated surfaces. As a result, the Fe3O4/NH2 core has a polymer shell with one hemisphere PMAA and the other hemisphere PNIPAM-b-PMAA resulting in the PMAA-Fe3O4-PNIPAM-b-PMAA bicompartmental polymer Janus nanoparticles. Elemental and functional group compositions were confirmed using ATR-FTIR, XPS, and EDS. Imaging with AFM, SEM, and TEM showed the evolution of the Janus nanoparticle morphology. This study demonstrates a facile and innovative scheme involving a noncovalent solid protection technique combined with sequential, surface-confined controlled radical polymerizations for the production of multicomponent nanocomposites
Beschreibung:Date Completed 22.04.2015
Date Revised 17.06.2014
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la500824r