Anaerobic fermentation of organic solid wastes : volatile fatty acid production and separation

Anaerobic fermentation of organic municipal solid waste was investigated using a leach-bed reactor (LBR) to assess the volatile fatty acid (VFA) production efficiency. The leachate recycle rate in the LBR affected the VFA composition of the leachate. A six-fold increase in the recycle rate resulted...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 69(2014), 10 vom: 18., Seite 2132-8
1. Verfasser: Yesil, H (VerfasserIn)
Weitere Verfasser: Tugtas, A E, Bayrakdar, A, Calli, B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Fatty Acids, Volatile Membranes, Artificial
Beschreibung
Zusammenfassung:Anaerobic fermentation of organic municipal solid waste was investigated using a leach-bed reactor (LBR) to assess the volatile fatty acid (VFA) production efficiency. The leachate recycle rate in the LBR affected the VFA composition of the leachate. A six-fold increase in the recycle rate resulted in an increase of the acetic acid fraction of leachate from 24.7 to 43.0%. The separation of VFAs via leachate replacement resulted in higher total VFA production. VFA separation from synthetic VFA mix and leachate of a fermented organic waste was assessed via a counter-current flow polytetrafluoroethylene (PTFE) membrane contactor. Acetic and propionic acid permeation fluxes of 13.12 and 14.21 g/m(2).h were obtained at low feed pH values when a synthetic VFA mix was used as a feed solution. The highest selectivity was obtained for caproic acid compared to that of other VFAs when synthetic VFA mix or leachate was used as a feed solution. High pH values and the presence of suspended solids in the leachate adversely affected the permeation rate
Beschreibung:Date Completed 31.07.2014
Date Revised 17.03.2022
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2014.132