Compositions, structures, and catalytic activities of CeO₂Cu₂O nanocomposites prepared by the template-assisted method
CeO2Cu2O nanocomposites were prepared from Cu2O cubes and octahedra by the template-assisted method involving the liquid (Ce(IV))-solid (Cu2O) interfacial reaction. Their compositions, structures, and catalytic activities in CO oxidation were studied in detail. Under the same reaction conditions, Ce...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 30(2014), 22 vom: 10. Juni, Seite 6427-36 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2014
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Cerium 30K4522N6T Copper 789U1901C5 |
Zusammenfassung: | CeO2Cu2O nanocomposites were prepared from Cu2O cubes and octahedra by the template-assisted method involving the liquid (Ce(IV))-solid (Cu2O) interfacial reaction. Their compositions, structures, and catalytic activities in CO oxidation were studied in detail. Under the same reaction conditions, CeO2@Cu2O nanocomposites prepared from cubic and octahedral Cu2O templates exhibit different compositions and structures. With an increasing amount of Ce(IV) reactant, a smooth CeO2-CuOx shell develops on the surface of Cu2O cubes and eventually void cubic core/multishell Cu2O/CeO2-CuOx nanocomposites form; however, a rough CeO2-CuOx shell develops on the surface of Cu2O octahedra, and eventually hollow octahedral CeO2-CuOx nanocages form. The formation of different compositions and structures of CeO2@Cu2O nanocomposites was correlated with the different exposed crystal planes and surface reactivities of Cu2O cubes and octahedra. The catalytic activity of CeO2@Cu2O nanocomposites in CO oxidation depends on their compositions and structures. The most active CeO2@Cu2O nanocomposites become active at 70 °C and achieve a 100% CO conversion at 170 °C. These results broaden the versatility of Cu2O nanocrystals as the sacrificial template for the fabrication of novel nanocomposites with core/shell and hollow nanostructures and exemplify the morphology effect of Cu2O nanocrystals in liquid-solid interfacial reactions with respect to the composition, structure, and properties of nanocomposites prepared by the template-assisted method |
---|---|
Beschreibung: | Date Completed 22.04.2015 Date Revised 10.06.2014 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la501406w |