MsLRR : a unified multiscale low-rank representation for image segmentation

In this paper, we present an efficient multiscale low-rank representation for image segmentation. Our method begins with partitioning the input images into a set of superpixels, followed by seeking the optimal superpixel-pair affinity matrix, both of which are performed at multiple scales of the inp...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 5 vom: 25. Mai, Seite 2159-67
1. Verfasser: Liu, Xiaobai (VerfasserIn)
Weitere Verfasser: Xu, Qian, Ma, Jiayi, Jin, Hai, Zhang, Yanduo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM238157253
003 DE-627
005 20231224113200.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238157253 
035 |a (NLM)24818238 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
245 1 0 |a MsLRR  |b a unified multiscale low-rank representation for image segmentation 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 27.10.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we present an efficient multiscale low-rank representation for image segmentation. Our method begins with partitioning the input images into a set of superpixels, followed by seeking the optimal superpixel-pair affinity matrix, both of which are performed at multiple scales of the input images. Since low-level superpixel features are usually corrupted by image noise, we propose to infer the low-rank refined affinity matrix. The inference is guided by two observations on natural images. First, looking into a single image, local small-size image patterns tend to recur frequently within the same semantic region, but may not appear in semantically different regions. The internal image statistics are referred to as replication prior, and we quantitatively justified it on real image databases. Second, the affinity matrices at different scales should be consistently solved, which leads to the cross-scale consistency constraint. We formulate these two purposes with one unified formulation and develop an efficient optimization procedure. The proposed representation can be used for both unsupervised or supervised image segmentation tasks. Our experiments on public data sets demonstrate the presented method can substantially improve segmentation accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xu, Qian  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
700 1 |a Jin, Hai  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanduo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 5 vom: 25. Mai, Seite 2159-67  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:5  |g day:25  |g month:05  |g pages:2159-67 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 5  |b 25  |c 05  |h 2159-67