Simultaneous segmentation and multiresolution nonrigid atlas registration

In this paper, a novel Markov random field (MRF)-based approach is presented for segmenting medical images while simultaneously registering an atlas nonrigidly. In the literature, both segmentation and registration have been studied extensively. For applications that involve both, such as segmentati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 7 vom: 03. Juli, Seite 2931-43
1. Verfasser: Gass, Tobias (VerfasserIn)
Weitere Verfasser: Székely, Gábor, Goksel, Orcun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM238140962
003 DE-627
005 20231224113139.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2322447  |2 doi 
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238140962 
035 |a (NLM)24816586 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gass, Tobias  |e verfasserin  |4 aut 
245 1 0 |a Simultaneous segmentation and multiresolution nonrigid atlas registration 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.03.2015 
500 |a Date Revised 02.06.2014 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, a novel Markov random field (MRF)-based approach is presented for segmenting medical images while simultaneously registering an atlas nonrigidly. In the literature, both segmentation and registration have been studied extensively. For applications that involve both, such as segmentation via atlas-based registration, earlier studies proposed addressing these problems iteratively by feeding the output of each to initialize the other. This scheme, however, cannot guarantee an optimal solution for the combined task at hand, since these two individual problems are then treated separately. In this paper, we formulate simultaneous registration and segmentation (SRS) as a maximum a-posteriori (MAP) problem. We decompose the resulting probabilities such that the MAP inference can be done using MRFs. An efficient hierarchical implementation is employed, allowing coarse-to-fine registration while estimating segmentation at pixel level. The method is evaluated on two clinical data sets: 1) mandibular bone segmentation in 3D CT and 2) corpus callosum segmentation in 2D midsaggital slices of brain MRI. A video tracking example is also given. Our implementation allows us to directly compare the proposed method with the individual segmentation/registration and the iterative approach using the exact same potential functions. In a leave-one-out evaluation, SRS demonstrated more accurate results in terms of dice overlap and surface distance metrics for both data sets. We also show quantitatively that the SRS method is less sensitive to the errors in the registration as opposed to the iterative approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Székely, Gábor  |e verfasserin  |4 aut 
700 1 |a Goksel, Orcun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 7 vom: 03. Juli, Seite 2931-43  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:7  |g day:03  |g month:07  |g pages:2931-43 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2322447  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 7  |b 03  |c 07  |h 2931-43