Learning cascaded shared-boost classifiers for part-based object detection

This paper focuses on the problem of detecting a number of different class objects in images. We present a novel part-based model for object detection with cascaded classifiers. The coarse root and fine part classifiers are combined into the model. Different from the existing methods which learn roo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 4 vom: 13. Apr., Seite 1858-71
1. Verfasser: Yali Li (VerfasserIn)
Weitere Verfasser: Shengjin Wang, Qi Tian, Xiaoqing Ding
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM238061256
003 DE-627
005 20231224112956.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2307432  |2 doi 
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238061256 
035 |a (NLM)24808352 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yali Li  |e verfasserin  |4 aut 
245 1 0 |a Learning cascaded shared-boost classifiers for part-based object detection 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.12.2014 
500 |a Date Revised 08.05.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper focuses on the problem of detecting a number of different class objects in images. We present a novel part-based model for object detection with cascaded classifiers. The coarse root and fine part classifiers are combined into the model. Different from the existing methods which learn root and part classifiers independently, we propose a shared-Boost algorithm to jointly train multiple classifiers. This paper is distinguished by two key contributions. The first is to introduce a new definition of shared features for similar pattern representation among multiple classifiers. Based on this, a shared-Boost algorithm which jointly learns multiple classifiers by reusing the shared feature information is proposed. The second contribution is a method for constructing a discriminatively trained part-based model, which fuses the outputs of cascaded shared-Boost classifiers as high-level features. The proposed shared-Boost-based part model is applied for both rigid and deformable object detection experiments. Compared with the state-of-the-art method, the proposed model can achieve higher or comparable performance. In particular, it can lift up the detection rates in low-resolution images. Also the proposed procedure provides a systematic framework for information reusing among multiple classifiers for part-based object detection 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Shengjin Wang  |e verfasserin  |4 aut 
700 1 |a Qi Tian  |e verfasserin  |4 aut 
700 1 |a Xiaoqing Ding  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 4 vom: 13. Apr., Seite 1858-71  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:4  |g day:13  |g month:04  |g pages:1858-71 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2307432  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 4  |b 13  |c 04  |h 1858-71