Context-aware discovery of visual co-occurrence patterns

Once an image is decomposed into a number of visual primitives, e.g., local interest points or regions, it is of great interests to discover meaningful visual patterns from them. Conventional clustering of visual primitives, however, usually ignores the spatial and feature structure among them, thus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 23(2014), 4 vom: 13. Apr., Seite 1805-19
1. Verfasser: Hongxing Wang (VerfasserIn)
Weitere Verfasser: Junsong Yuan, Ying Wu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM238061213
003 DE-627
005 20231224112956.0
007 cr uuu---uuuuu
008 231224s2014 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2014.2308416  |2 doi 
028 5 2 |a pubmed24n0793.xml 
035 |a (DE-627)NLM238061213 
035 |a (NLM)24808348 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hongxing Wang  |e verfasserin  |4 aut 
245 1 0 |a Context-aware discovery of visual co-occurrence patterns 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.12.2014 
500 |a Date Revised 08.05.2014 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Once an image is decomposed into a number of visual primitives, e.g., local interest points or regions, it is of great interests to discover meaningful visual patterns from them. Conventional clustering of visual primitives, however, usually ignores the spatial and feature structure among them, thus cannot discover high-level visual patterns of complex structure. To overcome this problem, we propose to consider spatial and feature contexts among visual primitives for pattern discovery. By discovering spatial co-occurrence patterns among visual primitives and feature co-occurrence patterns among different types of features, our method can better address the ambiguities of clustering visual primitives. We formulate the pattern discovery problem as a regularized k-means clustering where spatial and feature contexts are served as constraints to improve the pattern discovery results. A novel self-learning procedure is proposed to utilize the discovered spatial or feature patterns to gradually refine the clustering result. Our self-learning procedure is guaranteed to converge and experiments on real images validate the effectiveness of our method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Junsong Yuan  |e verfasserin  |4 aut 
700 1 |a Ying Wu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 23(2014), 4 vom: 13. Apr., Seite 1805-19  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:4  |g day:13  |g month:04  |g pages:1805-19 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2014.2308416  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2014  |e 4  |b 13  |c 04  |h 1805-19